博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
课题论文之调研--贝叶斯网络
阅读量:5035 次
发布时间:2019-06-12

本文共 575 字,大约阅读时间需要 1 分钟。

一:重要原理

(1)链规则:

(2)贝叶斯定理:

(3)变量间条件独立性:

二:主要问题

2.1贝叶斯网络概率推理

2.2结构学习:发现变量之间的图关系

结构学习算法:

(1)K2算法: 通过为每个结点寻找父结点集合来学习贝叶斯网络结构。它不断往父结点集中添加结点,并选择能最大化数据和结构的联合概率的结点集。

(2)HillClimbing (operators: edge addition, edge deletion, edge reversion) 从一个无边结构开始,在每一步,它添加能最大化BIC的边。算法在通过添加边不能再提高结构得分时停止。

(3)缺失数据结构学习算法:SEM

SEM不是每次迭代都同时优化模型结构和参数,而是先固定模型结构进行数次参数优化后,再进行一次结构加参数优化,如此交替进行。 目的:减小计算复杂度。

2.3参数学习:决定变量之间相互关联的量化关系

(1)最大似然估计 完全基于数据,不需要先验概率

(2)贝叶斯估计 假定在考虑数据之前,网络参数服从某个先验分布。先验的主观概率,它的影响随着数据量的增大而减小。

(3)缺值数据最大似然估计:EM算法 (迭代算法)

2.4分类

2.5隐变量和隐结构学习

 

 

转载于:https://www.cnblogs.com/graceting/p/4219066.html

你可能感兴趣的文章
js基础
查看>>
Python作业1
查看>>
MySQL新增多个字段
查看>>
英文词频统计预备,组合数据类型练习
查看>>
JSP 页面中插入图片
查看>>
[网络收集]showModalDialog和showModelessDialog区别
查看>>
[Canvas]Running Horse
查看>>
OC-runtime
查看>>
格式化输入输出和分支语句
查看>>
第三次作业:处理器管理与进程调度
查看>>
详解log4j2(上) - 从基础到实战
查看>>
Log4j日志管理的简单实例
查看>>
VS2013找不到SDKDDKVer.h
查看>>
设置Webdriver启动chrome为默认用户的配置信息
查看>>
[Tips]Javascrip计算文件行数
查看>>
Java开发小技巧(三):Maven多工程依赖项目
查看>>
python QRcode
查看>>
AHOI 2009 (BZOJ1798)维护序列 seq (线段树好题?)
查看>>
2019牛客暑期多校训练营(第五场)H subsequence 2(拓扑排序)
查看>>
第十七周博客作业<西北师范大学|李晓婷>
查看>>